ARCH 7152 – Design Topic Research Studio: Matter Design Computation (MS MDC students only) 6 credits
ARCH 4605/6605 Special Topics in Construction: Matter Design Computation 3 credits
Cornell University, AAP Department of Architecture
Spring 2019, Tuesdays 12:20-2:15pm 142 E Sibley / Sabin Design Lab, B30
Instructor: Jenny E. Sabin / jsabin@cornell.edu / 340L E. Sibley Hall / (607) 255-4898

Although there have been tremendous innovations in design, material sciences, bio- and information technologies, direct interactions and collaborations between scientists and architects are rare. One approach is to couple architectural designers with engineers and biologists within a research-based laboratory-studio in order to develop new ways of thinking, seeing and working in each of our fields. This course is part 2 of an introduction to fundamental concepts in Matter Design Computation. Course work includes exposure to different theories, research, and practices of emerging technologies, digital fabrication, computational design, experiments in building construction techniques, new materials, bio-inspired design, and human-centered adaptive architecture. Project work will be closely aligned to ongoing research in the Sabin Lab at Cornell AAP with emphasis upon material systems, generative design, simulation, intermediate computational design, physical modeling, and digital fabrication within a hybrid lab+studio setting. Project work will follow 3 parallel topics: Robotic Sensing and Fabrication, 3D printed componentry, and bio-steered generative design. The course situates itself at the forefront of a new direction for 21st-century architectural research practice—one that investigates the intersections of architecture and science and applies insights and theories from biology and computation to the design of material structures. In particular, this course will unfold long-standing traditions of shared relationships between architecture and biology, with sub-topics that include sustainability, ecological design, biomimicry, digital fabrication, experimental structures, and materials science.