This class will focus on recordation and survey techniques for historic sites, using as a basis the standards and guidelines promulgated by the National Park Service for the Historic American Building Survey. Students will undertake building research using field notes, digital photography and drawings. Students will then prepare measured drawings both by hand and by CAD, using those field notes and photographs.

The building selected for this project can be the one being studied in CRP 5640: BMC, or another building or historic site of your choosing. By the end of the class, students will have generated either:

1) A set of drawings that will include a site plan, floor plans, building elevations, building sections, window and door details, other critical details and schedules, and a graphic condition analysis using annotated drawings and photography. (Cultural landscape requirements will differ based on the site, but should be developed with the professor early in the term.)

2) A single-sheet submission to the Leicester Holland Prize. Actual submission is required.

Materials:
You will need some of the same equipment required for BMC: 10x loupe, 35’ (or longer) metal tape, camera, and an 11x17 tablet (Styrofoam or other) with 4 binder clips. You should also get, or have access to, a profile gauge/comb. For drawing, you need an architectural (not engineering) scale, straightedge, triangle(s), pencils (2H, 4H, F or B) that can be sharpened (or lead holders with leads that can be sharpened) sharpener, eraser. All field drawings and sketches should be completed on 11x17, 1/8” graph paper, which you have prepared with a title block.

You will also need to have all the codes and permissions required to access the Sibley computer labs and class computer account.

Recommended Texts:
The following texts will serve as handy reference tools now and in the future. The first two are very similar in subject matter, and either will suffice. The second pair covers the fundamentals of architectural drawing and construction, in its many forms. These are available for reference in Room 102 and in the Fine Arts Library.
Class Organization:
The basic format of the class will be pin-up and review of progress work, plus short lectures on elements of buildings, technical drawings and/or computer drafting techniques. The remainder of each class will be allotted for lab time, when students may work on drawings or seek help from the professor. The final class day will be a review of your completed set. The final set will be due one week later.

Final Project (Option 1)
The final project represents a partial set of measured drawings, completed to HABS Standards. This set should provide a detailed, pictorial representation of a given structure. A nearly finished set is due for review on the final day of class; a final critique of student work will be given during finals week.

Final Project Deliverables:
1. Site plan with vegetation and roof plan at $\frac{1}{16}$" or $\frac{1}{8}$"=1'
2. Minimum of 1 Floor plan at $\frac{1}{4}$"=1'
3. Minimum of 1 elevations at $\frac{1}{2}$"=1'
4. Minimum of 1 sections at $\frac{1}{2}$"=1'
5. A sheet of appropriate details: window or door schedules, interior elevations, molding profiles, etc.

Additional Requirements:
1. All drawings must be on 24x30" sheets
2. It is recommended that all drawings be created in AutoCAD. However, if students choose to complete drawings by hand, they must be drafted on vellum and in pen. Additionally, students choosing to present primarily hand drawings are required to complete their floor plan in AutoCAD.
3. All field notes must be neatly assembled and included as part of the final submission.

Final Project Option 2
Students may choose to prepare a single-sheet submission to the Holland Prize, offered by the Historic American Buildings Survey program. See http://www.nps.gov/hdp/competitions/holland.htm. That sheet must be based on the same quality of field notes and base drawings as is required for option 1 above. An actual submission to the competition is required,

Grading:
A substantial portion of the final grade will be determined by the student’s final project. However, regular attendance, preparedness, and the quality of work in assignments and progress reviews will be accounted for as well.

Further Considerations:
For large or especially complicated buildings, students may complete the final project in groups of two or more, at the discretion of the professor.

Schedule:

<table>
<thead>
<tr>
<th>Week 1</th>
<th>January 27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to class, HABS, fundamentals measured drawing, final project, necessary equipment, and field survey. Hand-drafting and dimensioning.</td>
<td></td>
</tr>
<tr>
<td>Assignment 1: Measure and draw, using appropriate HABS standards, a floor plan of Sibley 102. Drawings need not be to scale, but should be clear, legible, and fully labeled and dimensioned. Make sure you have computer lab access.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Week 2</th>
<th>February 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Review assignment 1</td>
<td></td>
</tr>
<tr>
<td>introduction to AutoCAD: lines, layers, and commands; basic of hand drafting</td>
<td></td>
</tr>
<tr>
<td>Assignment 2: Measure and Draw a Small Building, working in teams, but producing individual drawings. Also: Identify Project Site</td>
<td></td>
</tr>
</tbody>
</table>
| Week 3 | February 10 | Review assignment 2
AutoCAD: model space, review commands
Assignment 3: Survey a window construction; include a plan, section, and elevation. Also prepare logistics for fieldwork (letters, permissions, approvals, etc.) |
|---|---|---|
| Week 4 | February 11 | Review assignment 3
Drafting conventions, line weights, etc.
AutoCAD Tutorial: Converting field notes into working drawings; line weights.
Assignment 4: Exercises done using the parallel rule: a) lettering in two sizes, b) long lines using at least three different leads (and twirling the pencil), demonstrating consistency of spacing (between lines), hardness (depth of impression), and thickness (line width). There should be at least ten vertical lines (using a triangle) and ten horizontal lines. |
| Week 5 | February 17 | Review assignment 4
Introduction to Photoshop and Integrating photographs and measured drawings
AutoCAD: Using photographs and xrefs in model space; scale
Assignment 5: Bring to class February 26 two images, a before and after using the same base photograph, demonstrating in the second at least four Photoshop techniques, such as the clone stamp, perspective correction, band-aid, color change, paint brush, etc. |
| Week 6 | February 24 | Review assignment 5
Review requirements of sheet borders; laying out a successful sheet
AutoCAD: Using paper space
Assignment 6: Design and Print 11x17 sheet for Field Notes |
| Week 7 | March 2 | Review Assignment 6
Text, typeface, and dimensions
Introduction to InDesign
AutoCAD: X-refs in paper space, manipulating viewports, laying out sheets, managing drawings
Assignment 7: Measured Ground Floor Plan Field Notes (minimum required) |
| Week 8 | March 9 | Review Field Notes
Enter field notes into AutoCAD
AutoCAD: Plotting |
| Week 9 | March 16 | Lab time in class
Continue progress on final drawings |
| Week 10 | March 23 | Review in Class: 50% submission of final drawings |
| Week 11 | March 30 | Spring Break |
| Week 12 | April 6 | Lab time in class
Continue progress on final drawings |
| Week 13 | April 13 | Review in Class: 75% submission of final drawings |
| Week 14 | April 20 | Lab time in class
Continue progress on final drawings |
| Week 15 | April 27 | Lab time in class
Continue progress on final drawings |
| Week 16 | May 4 | Final Review – 100% due |
| Week 17 | May 11 | Final Project Due, revised per comments from Final Review |